Go Back  R/C Tech Forums > General Forums > Nitro On-Road > Onroad Nitro Engine Zone
Engine Tuning/Setup 101 (sealing and pinch test) >

Engine Tuning/Setup 101 (sealing and pinch test)

Community
Wiki Posts
Search

Engine Tuning/Setup 101 (sealing and pinch test)

Thread Tools
 
Search this Thread
 
Old 06-06-2007, 10:37 AM
  #1  
Tech Adept
Thread Starter
 
Kemorc's Avatar
 
Join Date: May 2007
Posts: 235
Default Engine Tuning/Setup 101 (sealing and pinch test)

this is a guide I always have used as a reference for those who buy a mill from me:


Airtight is Right

In order for an engine to idle, transition and tune consistently it must be airtight- airtight meaning that no air can enter the engine except through the carburetor intake. Surprisingly, even brand new out-of-the-box high-end engines can have air leaks and until these leaks are found and eliminated, the engine won't run consistently and cannot be precisely tuned. The good news is, several years ago I figured out an easy way to check for and fix air leaks. You'll need the following:

• A small glass of soapy water
• A small brush
• About a foot of fuel tubing

Step 1. Be sure that the high-speed needle is open at least two turns out and the throttle is at fully open.
Step 2. Install one end of the fuel tubing on the carburetor nipple. You're going to be blowing into the other end of the tubing to pressurize the engine crankcase.
Step 3. Place your thumb over the carburetor intake to prevent air from escaping, then blow into the fuel tubing while brushing soapy water around the base of the carburetor, on both sides of the pinch bolt, around the fuel fittings, at the high and low speed needle valves, around the front bearing and even around the back plate.

If any bubbling occurs you've got an air leak. But don't be alarmed. Fixing the leak is easy and your engine will run remarkably better and more consistently when you've eliminated these leaks.


The Fix

Brushing soapy water around all possible air leak points while pressurizing the case will easily identify air leaks.

The most common air leaks seem to occur around the pinch bolt. Applying a dab of RTV (or silicon) over both exposed sides of the pinch bolt will fix this type of leak. RTV is also great for sealing any leaks around the base of the carburetor. Simply remove the carburetor and run a small amount of RTV around the base of the carb where the leak occurred. Reinstall the carburetor and allow the RTV to ooze out between the crankcase and the carb body. For leaks around the high-speed needle valve fittings, usually retightening the high-speed needle assembly will take care of these. Leaks directly at the high speed or low speed needle usually means there's a damaged O-ring that must be replaced. Many racers don't realize that the front bearing can leak air. That's why nearly every high-end engine uses a rubber sealed front ball bearing to not only keep out dirt, but also air. If your front bearing leaks air, it's time for a bearing replacement.

This simple leak check can easily be done even when the engine is installed in a car. After you've done this test on several engines you'll be surprised of two things: first, how often unwanted air leaks occur and second, how much better your engine runs, idles and tunes when it's airtight. To run right it must be airtight!

Airtight Fuel system
The Fuel system must also be airtight. If the fuel tank, tank lid, fuel lines or filter has a leak then the same kind of tuning issues as described above will occur. While you can check the fuel system by using the same method of brushing soapy water onto the suspected offending area while blowing into the tank, I generally find it better to simply remove the tank from the car and submerse it in a sink of water while blowing into the vent line and plugging the fuel line. If bubbles are present you've got a leak.

An engine at full throttle produces about 6 to 8 psi in the vent line and conversely in the tank. By blowing really hard you're also able to produce about 6 to 8 psi for a couple of seconds. If you're able to blow hard enough to cause the tank lid to open slightly and leak, it's time to replace the tank lid spring or bend more preload in the spring. The entire system (fuel tank, fuel filters, fuel lines, tank fittings, etc.) must be airtight to achieve consistent repeatable performance. I always that my fuel system is airtight when it's new but also recheck it every time I rebuild a car after a race. It easy insurance plus soapy water is a good way to thoroughly clean the tank. Just be sure it's totally dry before using it by flushing out any water left in the tank with fuel before installing it in you car.

Tuning in a Pinch
The pinch test.


Many racers find it difficult to properly tune the low speed needle. We've developed a method that makes it easy, even for beginners, to adjust the low speed needle to within 5% of peak performance and it's done right on the bench. We call it the pinch test and here's how it works.

Step 1. Start your engine and warm it up for about 30 seconds by revving the engine from idle to mid-throttle while holding the wheels off the ground.

Step 2. Allow the engine to idle for 10 seconds. If the low speed needle tuning is so far off that it won't idle, simply bump the idle position higher until the engine will reliably run at a higher idle.

Step 3. With the engine at idle, pinch and hold the fuel line near the carburetor, cutting off the fuel flow and carefully listen to the engine rpm.

If the low speed needle is set correctly, the engine should increase rpm only slightly and then die.

If the engine increases several hundred rpm before dying, then the low speed needle is too rich and needs to be turned in.

If the rpm doesn't increase at all and the engine simply dies, the low speed needle is set too lean and should be richened or turned out.

After doing this a few times you'll get the hang of it, and tuning the low speed needle will become easy. The only way to get that last 5% performance on the low speed tune is through careful track testing. By evaluating the engine as it accelerates from a dead stop or out of slow corners during actual race conditions is the only way to get those last few percent of power from your engine. Variables like the clutch setting, gearing, traction, atmospheric conditions and even the car's weight will have an effect on this last 5% of tuning performance, and the optimum setting can only be reached by careful on-track tuning.

Fine Tuning in a Pinch
On high traction tracks instant throttle response and acceleration are the keys to being competitive. To get that last 5% of performance thru tuning, many top drivers and engine tuners use the punch test. Here's how it works.

With the high speed needle properly set and the low speed needle set per the pinch test above, run several laps at race pace to bring the engine up to temperature. Now stop the car at the beginning of the main straight and allow it to idle while you count to 15. At the count of 15, hit the throttle instantly full punch while carefully listening to the engine and note the rate of acceleration. If you did a good job with the pinch test above and the high-speed needle is properly set as described below, the car should rocket off the line with a powerful, crisp consistent engine sound. The trick here is to tune the low speed needle for even greater acceleration and an even crisper throttle response. Do this punch test several times until your very familiar with the acceleration rate (it helps to judge the amount of wheel spin) and the sound of the engine as it accelerates to full throttle. Now lean the low speed needle 1 hour (or 1/12th of a turn) and do the punch test again. Is the engine's acceleration rate and the crisp consistent sound better than in the previous test? Remember judging the wheel spin (the amount the wheels slip during heavy acceleration) is a good way to compare. If it's better or there's no change, lean the low speed needle 1 hour more and try the punch test again. At some point the engine will lean bog (hesitate) off the line during acceleration indicating that you've gone too far.

When you finally find this point through repeated punch tests then leaning the low speed needle one hour each time, richen the low speed needle 2 hours. This will be your engines peak setting giving maximum acceleration and throttle response for the specific conditions of the day. Just remember if you change anything, like gear ratios, clutch settings, exhaust systems, fuel, glow plugs and even changing atmospheric conditions like temperature and barometric will cause this optimum setting to change. Repeat the punch test often and especially just before a heat race to ensure maximum performance during the existing conditions.

The Dreaded Full Tank Lean Bog

If you've done much gas racing, you've probably encountered the dreaded lean bog that occurs right after a pit stop with a full tank of fuel. Right after the tank is filled, for about the next 3 or 4 laps the engine sags (lean bogs) when accelerating off of tight right-hand corners. On most tracks this happens when accelerating onto the straight. Seemingly, the lean bog magically goes away after a few laps but sure enough, after the next pit stop, it frustratingly returns-slowing lap times for several laps once again.
The key to eliminating full tank lean bogs is pressure tube position or adding a pressure reservoir as shown.

To solve this frustrating issue, it's important to understand what's causing it.
Here's the scoop. As the throttle is released entering a turn, the pressure in the tank is now greater that the reduced pressure in the pipe. When the tank is full, some of the fuel sloshes up into the pressure line. The centrifugal forces encountered in a right hand turn further pulls the fuel into the pressure line, causing reduced pressure in the tank. When the throttle is cracked open to accelerate, the engine goes lean because of this reduced tank pressure and hence the dreaded lean bog occurs. The reason it only lasts for a couple of laps is first, as the fuel level goes down in the tank it's less likely to slosh as much into the pressure line and second, as the fuel level goes down there is a larger open space in the tank that's pressurized, maintaining adequate pressure long enough to prevent the low pressure lean bog problem. (If your exhaust system is mounted on the left side, as with some of the latest monster trucks, then this phenomenon will occur in left hand turns.)

The Fix

Keep the fuel out of the pressure line! That's sometimes easier said than done. We've had the most success by rerouting the pressure line so that as it come off the pressure nipple, the tubing goes to the right side of the fuel tank, then makes a loop on the right side of the tank. This prevents the centrifugal force of a right hand turn from filling the pressure tube. We've also had good success by adding one of the big reservoirs (they look like a big aluminum fuel filter and are available from Mugen or OFNA) in the pressure line. Many manufacturers, like Mugen and Serpent, recognize this problem and are making special pressure pickups and tank lids with large open volumes in the lid itself. You may have noted that many top drivers' cars have several loops of fuel tubing wrapped in their cars and wondered what was the purpose. Now you know. The key to fixing this issue is to experiment with pressure tube routing and, if necessary, installing a pressure reservoir in the pressure line.

Vapor Lock

Compressed CO2 sprayed directly onto the carburetor is a great way to prevent vapor lock during long main flame-outs.

If you've ever had your engine flame out after a reasonably long run and then found it nearly impossible to re-start, you may have experienced vapor lock. Vapor lock occurs most often in .12- and .15-size engines, especially when they're enclosed in a body with a 1/10-scale gas sedan or stadium truck. Vapor lock normally occurs after the engine is shut off. Heat from the head and combustion chamber transfers through the crankcase, heating the carburetor to the point that the fuel that reaches the carburetor through the fuel line boils off. This makes it impossible to start the engine because it's starved for fuel. The only way to get the engine to run is to cool the carburetor below the fuel's boiling point. If you're sport driving, you can simply wait 5 minutes for the carb to cool on it's own and then restart. If you're in the middle of an important long main, here are some creative ways racers have (including at the world championship level) cooled their carburetors preventing vapor lock:

1. A bottle of compressed CO2 (or air like those that can be purchased to operate airbrushes) with a nozzle attached, allowing cold CO2 to be directed over the carburetor even when the body is in place. We've seen several top-level race teams use this CO2 method anytime the engine flames out to prevent the possibility of a vapor lock.

2. By pulling the air filter and simply dumping fuel from the fuel bottle over the carburetor, usually bringing the temperature back to a tolerable level within a minute. Just be sure to avoid getting fuel on the brakes, radio equipment or tires or you could be in for a bad race day!
Kemorc is offline  

Currently Active Users Viewing This Thread: 1 (0 members and 1 guests)
 
Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are Off



Contact Us - Archive - Advertising - Cookie Policy - Privacy Statement - Terms of Service -

Copyright © 2024 MH Sub I, LLC dba Internet Brands. All rights reserved. Use of this site indicates your consent to the Terms of Use.