Like Tree2Likes
  • 2 Post By rcmart

Know More About LiPo

Reply

Old 03-08-2018, 01:40 AM
  #1  
Shop Owner
Thread Starter
 
rcmart's Avatar
 
Join Date: May 2004
Location: Hong Kong
Posts: 3,052
Default Know More About LiPo



Lithium Polymer batteries (“LiPo” batteries), are a newer type of battery now used in many consumer electronics devices. It have been gaining in popularity in the RC industry over the last few years, and are now the most popular choice for anyone looking for long running times and high power.

LiPo batteries offer a wide array of benefits. But each user must decide if the benefits outweigh the drawbacks. For more and more people, they do. There is nothing to fear from LiPo batteries, so long as you follow the rules and treat the batteries well.

Let’s first talk about the differences between LiPo batteries and their NiCd and NiMH counterparts.

LiPo V.S. NiMH Batteries

LiPo batteries offer three main advantages over the common NiMH or NiCd batteries:
  • LiPo batteries are much lighter weight, and can be made in almost any size or shape.
  • LiPo batteries offer much higher capacities, allowing them to hold much more power.
  • LiPo batteries offer much higher discharge rates, meaning they pack more punch.

But, a coin has two sides, there are some drawbacks to LiPo batteries as well.
  • LiPo batteries have a shorter lifespan than NiMH/NiCd batteries. LiPos average only 300–400 cycles.
  • The sensitive chemistry of the batteries can lead to fire if the battery gets punctured and vents into the air.
  • LiPo batteries need special care in the way they are charged, discharged, and stored. The required equipment can be expensive.






Charging
It’s important to use a LiPo compatible charger for LiPos. As I said before, LiPo batteries require specialized care. They charge using a system called CC/CV charging. It stands for Constant Current / Constant Voltage. Basically, the charger will keep the current, or charge rate, constant until the battery reaches its peak voltage (4.2v per cell in a battery pack). Then it will maintain that voltage, while reducing the current. On the other hand, NiMH and NiCd batteries charge best using a pulse charging method. Charging a LiPo battery in this way can have damaging effects, so it’s important to have a LiPo-compatible charger.

The second reason that you need a LiPo-compatible charger is balancing. Balancing is a term we use to describe the act of equalizing the voltage of each cell in a battery pack. We balance LiPo batteries to ensure each cell discharges the same amount. This helps with the performance of the battery. It is also crucial for safety reasons.

While there are stand-alone balancers on the market, I recommend purchasing a charger with built-in balancing capabilities, using a balance board like the one pictured to the right. This simplifies the process of balancing, and requires one less thing to be purchased. And with the price of chargers with built-in balancers coming down to very reasonable levels, I can’t think of a reason you would not want to simplify your charging set up.

Most LiPo batteries need to be charged rather slowly, compared to NiMH or NiCd batteries. While we would routinely charge a 3000mAh NiMH battery at four or five amps, a LiPo battery of the same capacity should be charged at no more than three amps. Just as the C Rating of a battery determines what the safe continuous discharge of the battery is, there is a C Rating for charging as well. For the vast majority of LiPos, the Charge Rate is 1C. The equation works the same way as the previous discharge rating, where 1000mAh = 1A. So, for a 3000mAh battery, we would want to charge at 3A, for a 5000mAh LiPo, we should set the charger at 5A, and for a 4500mAh pack, 4.5A is the correct charge rate.

However, more and more LiPo batteries are coming out these days that advertise faster charging capabilities, like the example battery we had above. On the battery, the label says it has a “3C Charge Rate”. Given that the battery’s capacity is 5000mAh, or 5 Amps, that means the battery can be safely charged at a maximum of 15 Amps! While it’s best to default at a 1C charge rate, always defer to the battery’s labeling itself to determine the maximum safe charge rate.



Fireproof LiPo Bag

Due to the potential for fire when using LiPo batteries, certain precautions should be taken. Always have a fire extinguisher nearby. Another safety precaution is to charge the LiPo in a fire-resistant container. Most people opt toward the LiPo Bags on the market today. Although they are a bit pricy, but are more portable than other solutions. Finally, never charge your LiPo batteries unattended! If something does happen, you needs to be around to react quickly.



Discharging
As we touched on earlier, some modern chargers can read the internal resistance of the battery in milliohms (mΩ). If you have one of these chargers, you can get a sense of how your LiPos are performing, and how their internal resistance increases as they age. Simply keep track of the internal resistance reading each time you charge your battery, and chart the increase over time. You will see how just the process of using the LiPo battery begins to wear it out.

Heat causes the excess oxygen to build up more and more. Eventually the LiPo pack begins to swell (due to the oxygen gas build up). This is a good time to stop using the battery – its trying to tell you that it has come to the end of its life. Further use can, and probably will be dangerous.

The entire process of building up that lithium oxide usually takes around 300-400 charge/discharge cycles to reach a tipping point. That’s a typical lifetime of a LiPo battery. But when we heat the batteries up during a run, or discharge them lower than 3.0 volts per cell, or physically damage them in any way, or allow water to enter the batteries, it reduces the life of the battery.

In light of this, most manufacturers have taken to putting a Low Voltage Cutoff (LVC) on their speed controls. The LVC detects the voltage of the battery, and divides that voltage by the cell count of the battery. So it would see a fully charged 2S LiPo as 8.4V, or 4.2V per cell.

This is where the advantage of balancing comes in. Because the speed control does not read off the balance tap, it cannot know the exact voltages of each cell within the battery. The speed control can only assume that the cells of the battery are all equal. This is important because, as I mentioned above, discharging a LiPo cell lower than 3.0V causes a usually permanent degradation of the cell’s ability to absorb and retain a charge.



Storage
In the old days, we used to run our cars or airplanes until the batteries died, then just set the batteries on the shelf at home, waiting for the next time we could use them. We just stored them dead. But you should not do that with LiPo batteries. Nor should LiPo batteries be stored at full charge, either. For the longest life of the batteries, LiPos should be stored at room temperature at 3.8V per cell. Most modern computerized chargers have a LiPo Storage function that will either charge the batteries up to that voltage, or discharge them down to that voltage, whichever is necessary.

I recommend to our customers that they put their LiPo batteries in storage mode after every run. This isn’t necessary per se, but it does build up good habits. If you do it every time, you don’t have to worry about whether or not you remembered to put it in storage. I have had many customers come to me with batteries that died because they charged it up, intending to use it, but life got in the way and they never remembered to put it back to storage voltage. LiPo batteries can be damaged by sitting fully charged. This doesn’t mean they will get damaged every time you leave them for over a week. It just means they can, and I’ve seen it happen. So don’t forget to put your LiPos at storage voltage when you’re done using them.

They should also be stored in a fireproof container of some sort. As I mentioned above, most people tend toward leaving their LiPos in a LiPo bag, as they are portable and protect your workshop from catching fire should the LiPo combust. I have also seen people use empty ammo boxes, fireproof safes, and ceramic flower pots. Whatever you have (or can buy) that will prevent any fire from spreading will be worth it in the unlikely event that anything untoward should happen.

I feel the need to reiterate: the most common problem people have with LiPo batteries is a direct result of improper storage. When a LiPo battery sits for a long period of time (and not at proper storage voltage), it tends to discharge itself. If it drops below 3.0V per cell, the vast majority of LiPo chargers will not charge it. Sometimes, batteries with this problem can be rehabilitated, but just as often, they are a lost cause. So again: if you take a ‘laissez-faire’ approach to the storage of your LiPo batteries, it’s entirely likely that you will be purchasing new batteries sooner than you think.




rc xpress and JC3 like this.
rcmart is offline  
Reply With Quote
Old 07-22-2018, 12:37 AM
  #2  
Tech Adept
iTrader: (1)
 
Join Date: Apr 2018
Posts: 114
Trader Rating: 1 (100%+)
Default

Great info
riceball777 is offline  
Reply With Quote
Old 07-22-2018, 08:15 AM
  #3  
JC3
Tech Regular
iTrader: (2)
 
JC3's Avatar
 
Join Date: Feb 2018
Posts: 480
Trader Rating: 2 (100%+)
Default

Helpful info. After 8 months in RC, I still find this all a tad bit confusing. I think it's mainly because of the way that chargers report the data in a slightly confusing manner. It takes work to really understand it all.
JC3 is offline  
Reply With Quote

Currently Active Users Viewing This Thread: 1 (0 members and 1 guests)
 
Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are Off


Thread Tools
Search this Thread

Contact Us Archive Advertising Cookie Policy Privacy Statement Terms of Service